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ABSTRACT 

A nonlinear Boussinesq model for the shoaling of ocean surface gravity waves on 

beaches is presented and compared to second-order finite depth theory. The spectral 

Boussinesq model of Freilich and Guza (1984) for uni-directional waves propagating 

perpendicular to a beach with straight and parallel depth contours is extended to obliquely 

propagating waves. Predictions of the shoaling evolution of a single resonant triad with 

two primary incident wave components driving a secondary wave component are 

compared to finite depth theory predictions of forced secondary waves. Results for both 

sum- and difference-interactions are presented for a range of beach slopes, incident wave 

amplitudes, frequencies and propagation directions. 

The comparisons show that there is a region (roughly between 10 and 4 m depth 

for typical swell amplitudes and frequencies) where both theories predict very similar 

growth of secondary wave components. Whereas Boussinesq theory typically predicts 

slightly smaller secondary wave amplitudes than finite depth theory, the dependence of 

the secondary wave response on the directional spreading angle of the primary waves 

predicted by both theories are in good agreement. However, pronounced discrepancies 

between Boussinesq and finite depth predictions are noted for very low (infragravity) 

frequency secondary waves on relatively steep beaches. 
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I.    INTRODUCTION 

Wind-generated ocean surface gravity waves are the principal driving force for 

fluid motions and sediment transport in the littoral zone. Accurate models for the 

transformation of waves on beaches are needed to predict alongshore and rip currents, 

undertow, bedforms (e.g., bars and cusps) and beach erosion and accretion. In general, as 

waves shoal, amplitudes increase, wavelengths decrease and propagation directions 

change towards normal incidence to the beach. In addition to these linear shoaling and 

refraction effects, nonlinear wave-wave interactions cause transfers of energy to wave 

components with both higher and lower frequencies. 

Theories for nonlinear wave-wave interactions in deep water (kh»l, where k is 

the wavenumber and h is the water depth) and intermediate depths (kh=0(l)) are usually 

based on Stokes' (1847) perturbation expansion for weak nonlinearity (ak«l, where a is 

the wave amplitude) (Phillips, 1960; Hasselmann, 1962; Longuet-Higgins and Stewart, 

1962). A nonlinear transfer of energy to higher frequencies occurs through sum- 

interactions: two primary wind-waves having frequencies co, and co2, and wavenumbers 

k, and k2, excite a secondary wave, with the sum-frequency co, +co2 and (vector) sum 

wavenumber k, + k2. Phillips (1960) showed that at this order there are no resonances; 

secondary waves are forced waves that do not satisfy the gravity wave dispersion relation. 

Since the amplitudes are bounded, these forced waves are often called "bound waves". 

The predicted forced secondary waves are phase locked to the primary wind 

waves, and typically distort a linear sinusoidal wave profile to shapes with peaky crests 



and broad troughs. Observations of high frequency pressure and velocity fluctuations in 

intermediate depths agree well with second-order nonlinear theory predictions (Herbers et 

al., 1992; Herbers and Guza, 1991, 1992, 1994). 

In shallow water, the Stokes-type perturbation solutions are valid only if the 

Ursell number, Ur = -J^TT, is small (Stokes, 1847; Ursell, 1953). While this assumption 

holds well for intermediate continental shelf depths, it usually breaks down on beaches, 

where Ur is 0(1). In this shallow region (typically h<5 m), where dispersion is weak, 

nonlinearities become quite significant, and asymmetrical wave shapes develop with 

steep forward faces. 

The nonlinear shoaling region where Ur is typically 0(1) is better represented by 

the Boussinesq equations (Boussinesq, 1871), which assume that nonlinearity -, and 
h 

dispersion (kh)2, are both weak and of the same order (i.e., UrO(l)).   In Boussinesq 

theory, continuous nonlinear energy transfers take place between near-resonant wave 

triads.    Mei and LeMehaute (1966) and Peregrine (1967) extended the Boussinesq 

equations to a bottom sloping gently in 2 dimensions, and these equations have been used 

extensively to model the nonlinear evolution of waves shoaling on beaches. 

Freilich and Guza (1984) developed a Boussinesq model for unidirectional waves 

propagating over a bottom varying slowly in one dimension.   The predicted shoaling 

evolution of wave frequency spectra agrees well with field observations (Freilich and 

Guza, 1984; Elgar and Guza, 1985, 1986; Elgar et al, 1990).   Liu, Yoon, and Kirby 



(1985) developed a parabolic approximation to Peregrine's equations, allowing for small 

directional spreading angles on a two dimensional beach, but applications to a continuous 

frequency-directional spectrum of waves have not been reported. 

Presently, no uniformly valid theory exists for shoaling waves. Whereas fully 

dispersive finite depth solutions are singular at the shoreline, weakly dispersive 

Boussinesq solutions break down in intermediate depths (kh=0(l)). Thus, both finite 

depth and Boussinesq solutions are needed to model the shoaling zone. For typical swell 

amplitudes (0(1 m)) and periods (O(10 s)), finite depth theory can be applied in the 

"outer shoaling region", extending from roughly 20-6 m depth (Herbers et al., 1992), and 

Boussinesq theory in the "inner shoaling region", between roughly 7 m depth and the 

outer edge of the breaker zone (e.g., Freilich and Guza, 1984; Elgar and Guza, 1985). 

Although formally the validity ranges of finite depth and Boussinesq theories do not 

overlap, for practical applications there is a region (roughly 5-8 m depth) where both 

theories are expected to be reasonably accurate. The errors in finite depth and Boussinesq 

model predictions in this transition region are poorly understood. 

Difference-interactions between two wave components (co,,k,) and (co2,k2) 

excite a third wave at the difference-frequency and wavenumber, (co, -co2,k, -k2) (for 

(o, > co 2), that typically causes a "set down" of the mean ocean surface under groups of 

high waves (Longuet-Higgins and Stewart, 1962). Difference-interactions are 

particularly important because they drive energetic nearshore low frequency motions 

(nominally 0.005-0.05 Hz), known as infragravity waves or "surf beat" (e.g., Munk, 



1949; Tucker, 1950; Herbers et al., 1995a). Infragravity waves cause seiches in small 

harbors (Okihiro, et al., 1993), and are believed to be the primary means by which 

sediment is suspended in the inner surf zone during storms (Holman et al., 1978; Wright 

et al., 1982; Beach and Sternberg, 1988). 

Whereas incident wind waves and the associated higher frequency secondary 

waves are usually dissipated in the surf-zone, the low-frequency, long-wavelength 

secondary waves forced by difference-interactions may reflect from shore. Longuet- 

Higgins and Stewart (1962) suggested that forced secondary waves at infragravity 

frequencies are released in the surf zone, reflect from the beach, and subsequently radiate 

seaward as free waves. Observations of the directional properties of infragravity waves 

are consistent with this mechanism (Herbers et al., 1995b), but quantitative models for 

the nonlinear transfer of energy to infragravity frequencies are presently lacking. Second 

order finite depth theory (Hasselmann, 1962, based on the Stokes expansion) predicts 

accurately the amplitudes of forced infragravity waves in intermediate depths (Herbers et 

al., 1994), but is singular near the shoreline, and thus cannot predict the amplitudes of 

free infragravity waves released in the surf zone (Herbers et al., 1995b). Boussinesq 

theory may provide quantitative estimates of free infragravity energy radiated from shore. 

This paper extends the work of Freilich and Guza (1984), by examining both sum- 

and difference-interactions between obliquely propagating shoaling waves. The 2- 

dimensional Boussinesq equations for a beach with straight and parallel depth contours 

are derived in Chapter II, and solved for a spectrum of waves in Chapter III. The 

predicted evolution of amplitudes and phases for a single wave triad are compared to 



predictions based on Hasselmann's (1962) second order finite depth theory in Chapter IV. 

The results are summarized in Chapter V. All Figures are contained in the Appendix. 





II.    GOVERNING EQUATIONS AND APPROXIMATIONS 

In this chapter, Boussinesq equations are derived for obliquely propagating waves 

on a gently sloping, impermeable beach with straight and parallel depth contours. 

Following Peregrine (1967), non-dimensional variables will be used as follows: 

L    h* ri* 
h = —     r| = — 

h0 h0 

(x,y,z)=-^(x*,y*,z*)       t =  U- t 
hn V«n 

(u,v,w)=-7=(u*,v*,w*)        p = —— p* 
VA P8ho '0 

where * indicates a dimensional variable and h0 is a representative water depth. The z 

axis points vertically upwards, with z=0 corresponding to the mean surface. The x axis 

points onshore, and y points alongshore (Figure 1). The variables p, u, v, and w denote 

pressure and the velocity components in the x, y, and z directions, respectively. The free 

surface is defined by z = r|(x,t) where x is the horizontal space vector (x,y). The bottom 

is defined by z = -h(x). 

The equations of motion and the continuity equation in non-dimensionalized form 

(neglecting viscous effects) are: 

— + (u V)u + w— + Vp = 0 (2-1) 
at    V      ' dz 



—+ (u-V)w + w—+ ^+l = 0                                 (2-2) 

1-7         dw 
V-U + —= 0                                                   (2-3) 

where V denotes the two dimensional gradient operator 
Idx'oyJ 

, and u indicates the 

horizontal velocity vector (u,v). The surface and bottom boundary conditions are given 

by 

w=—+u-Vn       at z = r|(x,t)                                     (2-4a) 

P=0                    at z = n(x,t)                                    (2-4b) 

8h 
W = "U5x~        at  z = _h(x)                                     (2-4c) 

Irrotational flow is assumed, which yields the relation: 

- = Vw                                                      (2-5) 

The continuity Equation (2-3) can be vertically integrated using the kinematic 

boundary conditions (2-4a,c) and Leibniz's Theorem: 

V'ludz + 5 = 0                                                 (2-6) 
-h          dt 

8 



Following Peregrine (1967), the variables r\, p, and u are expanded in terms of 

the non-linearity parameter 8, defined to be the ratio of wave amplitude to water depth 

6=a/ h' 

r^en, + s2r|2+.. 

p = p0+sp, +e p2+... (2-7) 

U = 6U, +62U2+. 

where p0 = -z, is the hydrostatic pressure of the undisturbed fluid. In shallow water, the 

vertical velocity component w is 0(a) smaller than u, where the dispersion parameter, 

a = kh, is the product of the wavenumber and the water depth: 

w (J(EWI+E
2
W2+...') (2-8) 

Even waves with a large oblique incidence angle 60 relative to the shore-normal 

in deep water will refract so that the angle, 0(x), in shallow water is small and thus 

v « u. Assuming that the waves incident from deep water propagate over a seabed with 

approximately straight and parallel depth contours, the scaling of the v component 

follows from Snell's law: 

co2 

sin(6(x))=|^-jsine 

where   co   and   k(x)=(k(x),f)   are   the   non-dimensionalized   wave   frequency   and 

wavenumber vector. In shallow water this relation reduces to 



6(x)«k(x)h(x)sine0 (2-9) 

Hence, the ratio between v and u in shallow water is 0(kh), and we can write: 

u = eu, +£2u2+... 
(2-10) 

v = cr^ev, + e2v2+...) 

The independent variables are scaled accordingly: 

— = CT—    1-= 2JL    A = A    A-   d 

dx       dx'   '   dy    ° ay'   '   5z~öz'   '   sT^ä7 (2"H) 

Since the variables n,, p,, u( and wf (i = 0,1,...) are 0(l), the order of the terms appears 

explicitly when the relations (2-7), (2-8), (2-10) and (2-11) are substituted into the 

governing equations. 

The water depth h is assumed to be a slow function of x'. 

h = h00 (2-12) 

where x = EX' is a slow space variable, so that 

3x'~Edx (2-13) 

31      ]L 

Note that in dimensional coordinates, the beach slope   is 0(cre).  Thus, for typical 
C/A. 

shoaling wave values of e = 0.05, a = 0.2, the beach slope is assumed to be O(l0"2) . 

This is a realistic slope for a natural sandy beach. 

10 



First order relations for the wave-induced velocity and pressure fields are obtained 

by substituting Equations (2-7), (2-8), (2-10) and (2-11) into Equations (2-2) and (2-5) 

(2-14a) 
du, 

dz' 
= 0(8) 

dz' 
= 0(8) 

dp, 
-fMVl 

(2-14b) 

dz 

It follows from Equation (2-14) that u,, v1; and p, are independent of z'. 

Equation 2-14c integrates to (using the dynamic free surface boundary condition 

(Equation (2-4b))): 

PI=TI, (2-15) 

The first order horizontal momentum equations can be obtained by substituting 

Equations (2-7), (2-8), (2-10), (2-11), and (2-15) into Equation (2-1). In component 

form: 

(2-16a) 
öu,  ( dr\] 

dt'     dx' 
= 0(8) 

dv,     dr\, 
—- + —— = 0(8) (2-16b) 
dt'     dy' 

11 



Similarly, substituting Equations (2-7), (2-10), (2,11), and (2-13) in Equation (2- 

6) yields the first order depth-integrated continuity equation: 

f-+h^ = 0(E) (2-17) 

Substituting Equations (2-7), (2-8), (2-10), and (2-11) in Equations (2-2) and (2-5) 

we obtain the second order relations 

du,     dw,    ^, N 
^ = ^f + 0(s) (2-18.) 

5v,     dw,     ^, N 
— -^ + 0(s) (2-18b) 

5p2        Sw, 
+ 0(e) (2-18c) 

dz' dt' 

Vertically integrating the first order continuity equation (Equations (2-3), (2-10), 

(2-11)): 

^l + ^ = 0(e) 
8x'     dz' 

using Equations (2-4c), and (2-13) yields 

w,(z') = -(z' + h)—i- + 0(e) (2-19) 
ox 

Substitution of Equation (2-19) in Equation (2-18a-c) and integration with respect 

to z' (using the dynamic free surface boundary condition (Equation 2-4b)) yields: 

12 



u2=U2(x',y',t')- z'h + - 
a2u, 

dx'dy' 
+0(e) (2-20a) 

v2=V2(x',y',t')- z'h + 
a2u, 

5x'5y' 
+0(s) (2-20b) 

P2 =Ti2(x',y',t')+ z'h + - 
dx'dy' 

+0(s) (2-20c) 

where U2 and V2 are arbitrary velocity functions arising from the integration. 

These functions can be expressed in terms of the depth averaged second order flows ü2 

and v2 by vertically integrating Equations (2-20a,b): 

1    m     . . ,, , .   .  .x   1. ,   52u, 
ü,S-— fu2dz'=U2(x',y',t')f-h2   —J-   +0(8) (2-21a) 

h-l-n J-h \ rtv'~ h+r) 3    ax' 

^■fV202'^2^'^'4^!11 
2
      5U'       +0(8) 

ax'Sy' 
(2-2 lb) 

Finally, substituting the perturbation expansions (2-7), (2-8), (2-10), and (2-11), 

the first order relation (2-15) and the second-order relations (2-20a,b,c) and (2-21a,b) 

back into the horizontal momentum Equation (2-1) yields, componentwise: 

an,   au, 
—- + L+6 
dx'   at' 

^2    ,   ^2   J.„    5Ul 1U2      d  U 3„       A 

• + —- + U 
ax'   at'     ' ax'   3   ax,2at' 

0(82) (2-22a) 

13 



 - + L + 8 
dy'     dt' 

(dx\2     dx2 dv}     l   2     ö
3u,    A 

—— + —- + u,—]---h2 !— 
dy'     dt' dx'    3     dx'dy'dt' 

= 0(s2) (2-22b) 

and the corresponding second-order depth-integrated continuity equation is obtained by 

substituting Equations (2-7), (2-10), (2-11), and (2-13) into Equation (2-6): 

dr\]     du,       (dr\2     cu\     d 
+ L + 8 

at'   ax' 
ah 

>+h!^+hl5+l^^u^+u^   =0(s2) (2-22c) Vdt'      dx'     dy'   dx ax. 

14 



III.    SPECTRAL SOLUTIONS 

In Chapter II, an approximate set of governing equations was derived (2-22a,b,c) 

for waves shoaling on a beach with straight and parallel depth contours. In this chapter, 

these equations will be solved for a frequency-directional spectrum of waves. Equations 

(2-22a,b,c) can be expressed in terms of the first- and (depth-averaged) second-order 

velocity potential functions <(>, and <))2: 

u Jii     . v J*. 
1       a.  i '      1 dx' dy' 

8x' 2    dy' 

Dropping the primes to simplify the notation: 

u2=%+0(e);v2=^+0(e) 

1,,.        ,   ~, ,. ^llx+4>,x,+e[ r|2x+(j>2xt+ct)lx(t)!xx--h-4)lxxxt J=0(e ) (3-la) 

Tl.y + <f>.y,  + £1 ^ly + <t>2y, + Mlxy " 3 ^Ixxy, )  = 0(£2 ) (3'lb) 

Til,  +H,Xx  +E(T12.  
+h<t>2xx +H.yy + (^i 1 <t> 1 x )x + * .x^x )= 0(E

2 ) (3-lc) 

where subscripts t, x, y, x indicate derivatives. 

The lowest order wave field (n.,,^,) is assumed to be a linear superposition of 

nearly plane, shoreward propagating waves with frequency cop and alongshore 

wavenumber £ . 

15 



00 <x> 

^ = I   I   2aM^eXP[i(M/M^+^y"(°',t)] 2 
-      -        ! (3-2) 

(f)i = Z  Z ^—aP.q(x)exP[i(vM(x)+^qy-cDpt)] 
p=-oo   q = -ao    ^-lvD 

where cop = pAco and £q = qA^, with Aco and A£ the separation of adjacent bands in the 

Fourier representation, and the spatial variation in phase is given by 

*" -    "'    «TM00 (3-3) 5x M 
The amplitude (apq) and phase (vj/p_q) functions include a slow variation with x, owing 

to shoaling, refraction and non-linear effects. This same slow space variable x was used 

previously to scale the beach slope in Equations (2-12) and (2-13). In order for r|, and 

(j), to be real requires: 

p,q   —      -p,-q HVq   _ "~H'-p.-q * p.q   ~ — f p,-q 

Linear terms involving x\2 are eliminated from the governing Equations (3-la,b,c) 

by cross differentiating (— (3-la) (3-lc) and — (3-lb) - — (3-lc)): 
ot dx di dy 

(- - 1 A 
*,xtt ~(M>,XX)X +£{Kn ~(h<))2xx)x +(<t>,x(t)lxx)t --h

2<t>lxxxtt ~(h<|)lyy)x -h^X "(Mix)*   = 0(s2) 

(3-4) 

<tV -(h<t>lxx)y +^ -(h«!»^), +(M.xy) - jh2«|>lxxytt -(h<t>lyy)y -(Tl,<j),x)xy -(Mlx)yJ =0(E
2
) 

(3-5) 

16 



Equations (3-4) and (3-5) can be expressed as: 

V{K -h't'.x, + e[ 4>2tt - h<t>2« +|(*?x), -^h2<t»,_„ - h<t>lyy -0l,<|>lx)x -Mlx = 0(E2) 

(3-6) 

(with V the (scaled) horizontal gradient operator V = 
Vox' dy) 

), which integrates to 

*,„ -h*,xx +A *2«, - h<(»2„ + |(4>U --jh2«|»1X3m -h<|»lyy -(ti,«|.lx)x -M,x J =F(t) + 0(82) 

(3-7) 

where F(t) is an arbitrary function of time arising from the integration which we set equal 

to zero. Substitution of the lowest order wave field (Equation (3-2) and (3-3)) into 

Equation (3-7) yields, after some algebraic manipulations: 

♦--*♦-■! t|r"^*»',,i;+(,-,/ET"-r"h-''-,f»^-''')        (3-g) 
+ijrZ Za,--.a..ffl,exp[('l'p-».-.+V».->l'„q)|exp[(v,.,(x)+fqy-0)pt)]+O(s) 

m = -x n = -x 

The left-hand side of Equation (3-8) is the wave equation for <j>2.   To prevent 

resonant growth of <|>2 (which would upset the perturbation expansion, Equation (2-7)) 

requires that the forcing terms on the right-hand side of Equation (3-8) do not contain any 

free oscillations. Since all these terms obey the lowest-order dispersion relation 

(Equation (3-3)), it follows that the right-hand side of Equation (3-8) must vanish. 

17 



Collecting like frequencies and alongshore wavenumbers and solving for the real and 

imaginary parts yields a coupled set of equations for the amplitude and phase evolution of 

the lowest order waves: 

h,     3    3 CO CO 

ap.qS 
=-Jam-T + öh X Z   Z ap-m.q-nam,„ sin(v|/p_mq_n +v|/mn -v|/p_q) (3-9a) 

m=—<» n=—<r> 

TP,q =7^(°p-^—^q
2-^—h 2fflp Z   Z ap-m.q-„a1I,.ncos(|/p.II1.(1.n+\(;1I1J,-\|;M) (3-%) 

2op 8ap_q 

The first term on the right hand side of Equation (3-9a) is the amplitude growth of 

the mode due to shoaling. The first and second terms on the right hand side of Equation 

(3-9b) are dispersion and refraction corrections to the wave phase. The double 

summation terms give the amplitude growth and phase changes of a mode due to resonant 

non-linear interactions of all possible triads in which the mode participates. For uni- 

directional, normally incident waves, Equations (3-9a,b) reduce to Freilich and Guza's 

(1984) "consistent shoaling model" (Equations (16a,b) in their paper). 

Finally, we re-dimensionalize Equations (3-9a,b), and re-express them in unsealed 

(physical) coordinates. Dropping the "*" used previously to denote dimensional 

coordinates, and using Equation (3-3), we obtain 

p.qx 

h.     3   -3-(o 00 CO 

4ap-"17+Xh   2_T   £      2]    Vm.q-nVnSi^MVn^-n+HV,,-^) (3-1 Oa) 
" no ^g m=_00 n=_c„ 
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0„ 1     r- f„ V 

Vgh    6      IVg. 

CO Vgh^2_    3      -ia> 

y    2rap  q   8ap.q 

h 2 -7= Z   X ap-m.q-„am,n cos(v|/p_mq_n +(|/M-i|;M) 

(3-10b) 
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IV.    COMPARISON TO FINITE DEPTH THEORY 

In this Chapter the amplitude and phase evolution given by Equation (3-10a,b) are 

compared to predictions of second-order nonlinear finite depth theory (Hasselmann, 

1962). The Boussinesq equations were integrated over a plane beach for a single resonant 

triad consisting of two primary waves incident from deep water that drive a secondary 

wave component. Both sum- and difference-interactions are compared for a range of 

commonly observed beach slopes, incident wave amplitudes, frequencies, and 

propagation directions. The objective of these comparisons is to examine the similarities 

and differences of Boussinesq and finite depth theory predictions in the transition region 

from deep to shallow water, and in particular to investigate the dependence of the 

secondary wave growth on the directional spreading angle of the primary waves. While 

this approach is useful to describe the initial growth of a secondary wave component, in 

very shallow water the secondary wave amplitude grows to become comparable to the 

primary wave amplitudes and thus fully coupled spectral calculations are needed to 

predict the nonlinear shoaling evolution. 

For a single triad, we can simplify the notation used in Equation (3-10a,b) by 

introducing a single index i=l,2,3, where mode i has a frequency co(l) 

(0 <co(,) <co(2) <co(3)), alongshore wavenumber £{,), amplitude a(1), and phase v|/(1), and 

the triad satisfies the resonance rule: 

CO 
(3)=co(1)+co(2) , *(3>=£(,)+*<2) 

21 



The amplitude and phase evolution equations for this triad can be expressed (neglecting 

energy exchanges with any other components) compactly as: 

a(i)=S(i)+N(i)sinB(0 (4-la) 

with: 

N (i) 
v|/,J = k,', + D(" + R(')-^— cosB 

a(" 
(i) 

S(i) = _la<'')ik 
4       h 

k(" = 
CD (i) 

(4-lb) 

(shoaling term) 

(shallow water wave number) 

D(i) =-Vh 
6 
1   Ja^ 

R<" = 

y^gj 

oOV 

2co (i) 

3,-3/co(i) 

4 
N(i)=-h"^^Wa(n)a(m) 

(dispersion term) 

(refraction term) 

(nonlinear interaction term) 

-B(1> = -B(2) = B'3» = H/
(,)

 + ^ - M/
3) (biphase) 

A first-order finite difference scheme using an Arakawa A grid with a step size of 

0.1 m was used to integrate Equation (4-1). Test runs with grid spacings of 0.01 m and 

1.0 m yielded identical results, confirming the accuracy of the numerical scheme. 

Additional tests of the numerical scheme include a verification of energy conservation. 
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CO 

In second-order finite depth theory, two primary waves with frequencies co( and 

(2) (co(1) > co(2) > 0) and alongshore wavenumbers £m and £(2) excite secondary wave 

components with the sum-frequency and wavenumber (co(1) + co(2), £m + £{2)), and the 

difference-frequency and wave number (co(1) - co(2), £(l) - £{2)). In finite depth theory, the 

free surface elevation is given by 

ri(x,y,t)=a(1)cos(v|/(1)(x)+^(1)y-»(,)t)+a(2)cos(H/(2)(x)+£(2)y-co(2)t) 

+C+a
(1)(x)a(2)(x)cos(M/(,)(x)+H;(2)(x)+r^,)+^2)>-rco(,)+co(2)'|t) 

+C.a(1)(x)a<2)(x)cos(vt/(1)(x)-vt/<2)(x)+[?(1)-f(2)]y-[co(,)-co(2))) 

+other second-order terms 

where the primary wave amplitudes a(I), a(2) and phases \\>{l\ \}/(2) are given by the linear 

shoaling and refraction relations: 

a(i)(x) = 
c^cose1;» 

Cj)(x)cos(e(i)(x)) 
a«0   ;  y(i)(x) = vj/[)

i) + {k(i)(Qd^  ;  i = 1,2   (4-3) 

with subscripts o indicating deep water values at x = 0. Cg denotes the group velocity and 

0(,) is given by Snell's law. The coupling coefficients C+ and C. for the sum- and 

difference-interactions are given by (Hasselmann, 1962): 
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c = 
(co(,)±co(2)]f 

*     g|k(1) ± k<2)|tanh([k(,) ± k(2)|h)- (co(,) ± co<2)^ 

M 
+ co(1W2)    gk(,)-k(2) g k(»|2 |k(2)'2 ^ 

+ 
CD

(1
V

2)
      2(co(,) ±©(2))((D(,)cosh2((k(,,|h)   o)(2)cosh2(k(2)|h) 

co(,)2±(o(1)co(2)+(o(2)2     gk(!)-k(2) 

(4-4) 

2g 2o)(,,co (1),A(2) 

with k(,) the vector wavenumber of component i (k(l)(x), l{l)). 

Finite depth theory predictions of primary and secondary wave amplitudes in 10 

m depth were used to initialize the Boussinesq model (Equation (4-1)). The biphase B in 

Equation (4-1) was matched to the finite depth value (0 or n, depending on the sign of C+, 

Equations (4-2), (4-4)). 

Boussinesq and finite depth theory predictions of sum- and difference-frequency 

waves forced by a pair of swell components with frequencies 0.08 and 0.12 Hz on a slope 

0.01 beach are compared in Figures 2 and 3. The deep water incident wave amplitudes in 

these simulations are 0.2 m. In Figure 2 results are shown for two normally incident 

swell components. In Figure 3 the 0.08 Hz component is normally incident while the 

0.12 Hz component has a deep water incidence angle of 60°. In all cases the Boussinesq 

and finite depth theory predictions show very similar secondary wave growth between 10 

and 4 m depth. Overall, the amplitudes predicted by finite depth theory are slightly 

higher than those predicted by Boussinesq theory, suggesting that finite depth theory 

overpredicts the secondary wave growth when the triad is close to resonance. Boussinesq 
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theory predictions of the biphase are generally close to the finite depth theory values of 0 

(sum-interactions) and n (difference-interactions). The secondary wave amplitude 

growth in the Boussinesq predictions is controlled by the biphase of the triad (Equation 

(4-12)). The growth vanishes when B is equal to the finite depth values of 0 or n. Hence, 

the Boussinesq and finite depth theories do not smoothly match in 10 m depth and the 

Boussinesq biphase appears to oscillate around, and converge to the small value which 

causes the secondary wave to grow at the same rate as predicted by finite depth theory. 

The amplitude and biphase discrepancies between Boussinesq and finite depth 

theory predictions are generally larger for difference-interactions than for sum- 

interactions (Figures 2, 3 and other examples discussed below). Errors are expected in 

both finite depth and Boussinesq theory predictions for triads involving a low 

(infragravity) frequency secondary wave component because the infragravity wavelengths 

are much longer than those of the incident swell. For example, in the model run shown in 

Figure (2a,c) the wavelength of the 0.04 Hz difference-frequency component varies 

between 250 and 150 m and thus the depth variations over a wavelength (1.5 to 2.5 m) 

are appreciable. 

While the predicted sum-frequency secondary wave amplitudes are only slightly 

smaller for obliquely propagating primary waves than for normally incident primary 

waves (cf. Figures 2b and 3b), the 60° angular separation of the primary waves causes 

about an order of magnitude reduction in the difference-frequency secondary wave 

amplitude (cf. Figures 2a and 3a). The dependence of the sum- and difference-frequency 

secondary wave amplitudes on primary wave incidence angles is illustrated in Figures 4- 
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6. Secondary wave amplitudes in 4 m depth, normalized by the product of the primary 

wave amplitudes (in the same depth), are shown versus the directional spreading angle of 

the primary waves in deep water for a range of beach slopes and primary wave 

frequencies and amplitudes. In finite depth theory the normalized amplitude is equal to 

the coupling coefficient C (Equation (4-2)) and thus can be interpreted as the secondary 

wave response. 

In Figure 4 results are shown for primary wave pairs with frequencies (0.09 Hz, 

0.11 Hz) and (0.07 Hz, 0.13 Hz), and amplitudes 0.2 m on a slope 0.01 beach. In Figure 

5 the response of a (0.08 Hz, 0.12 Hz) primary wave pair with amplitudes 0.1 m is 

compared to the response of the same frequency pair, but with larger amplitudes 0.4 m, 

on a slope 0.01 beach. Results for 0.2 m amplitude primary waves with frequencies (0.08 

Hz, 0.12 Hz) on two different beach slopes 0.003 and 0.03 are shown in Figure 6. The 

Boussinesq and finite depth theory predictions of the dependence of the secondary wave 

response on the directional spreading angle of the two primary waves are generally in 

good agreement. In all cases sum-interactions are insensitive to the spreading angle with 

approximately a 10-20% decrease in the response when the spreading angle increases 

from 0 to 60°. The magnitude of the predicted sum-frequency response is insensitive to 

the primary wave frequencies and the beach slope with Boussinesq predictions 

consistently about 25% lower than finite depth predictions (cf. Figures 4b,d; 6b,d). 

However, while Boussinesq predictions of the sum-frequency response for 0.1 m 

amplitude primary waves (Figure 5b), are in very close agreement (about 10-20% lower) 

with the finite depth values, the Boussinesq predictions for 0.4 m amplitude waves are 
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about 30-50% lower than the finite depth values (Figure 5d). In this case finite depth 

theory predicts secondary wave amplitudes that are comparable to primary wave 

amplitudes and thus is not valid. Boussinesq theory predicts a reduced response for these 

large amplitude primary waves that is virtually independent of the spreading angle. 

The difference-frequency secondary wave response is much more sensitive to the 

directional spreading angle than the sum-frequency response (cf. Figures 4a,c; 5a,c; 6a,c 

to Figures 4b,d; 5b,d; 6b,d). An increase in deep water spreading angle from 0 to 60° 

causes a reduction in the difference-frequency response by a factor 3 to 10. The 

Boussinesq predictions are generally in good agreement with finite depth theory 

predictions, showing somewhat lower response levels but approximately the same 

variation with directional spreading angle. However, the agreement is much better on a 

gentle (0.003) slope (Figure 6a) than on a steep (0.03) slope (Figure 6c). In the latter case 

the depth changes from 10 to 4 m over a distance comparable to the secondary 

wavelength and the small beach slope assumption used in both Boussinesq and finite 

depth theory is grossly violated. Similar, but less pronounced discrepancies, between the 

Boussinesq and finite depth theory predictions for 0.02 Hz secondary waves (Figure 4a, 

with wavelengths 0(500 m)) suggests a break down of the small beach slope 

approximation. 

Overall, the comparisons of Boussinesq and finite depth theory predictions of 

secondary wave growth in the transition region from deep to shallow water show 

surprisingly good agreement. The Boussinesq predictions of both sum- and difference- 

frequency secondary wave amplitudes are slightly lower than finite depth predictions but 
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the dependence on directional spreading angle predicted by both theories are in excellent 

agreement. 
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V.    CONCLUSIONS 

Although wave transformation on beaches is generally well described by one- 

dimensional models, the directionality of waves is of crucial importance to a variety of 

nearshore processes including infragravity waves, longshore currents and sediment 

transport. In this paper Freilich and Guza's (1984) one-dimensional spectral model for 

the shoaling of uni-directional waves on a beach, based on the Boussinesq equations for 

weakly nonlinear, weakly dispersive waves in slowly varying depth (Peregrine, 1967) is 

extended to two dimensions. A beach with straight and parallel depth contours is 

assumed on which wave incidence angles are reduced by refraction. In this 

approximation, dispersion and directional spreading effects are shown to be of the same 

order, and near-resonant nonlinear interactions occur between any pair of incident wave 

components. A two-dimensional Fourier representation in the frequency and alongshore 

wavenumber domain is used to describe the lowest order wave field, yielding a coupled 

set of equations for the amplitude and phase evolution of each Fourier mode. For uni- 

directional waves these equations reduce to Freilich and Guza's model. 

Model results for the simple case of a single triad of waves are compared to 

second-order nonlinear, fully dispersive finite depth theory (Hasselmann, 1962) for a 

typical range of beach slopes and swell amplitudes, frequencies and propagation 

directions. In these model runs two primary swell components force a third (secondary) 

wave component with the sum- or difference-frequency and alongshore wavenumber. 

The Boussinesq model (not valid in deep water) was initialized using the finite depth 

theory predictions of the amplitudes and biphase in 10 m depth.   Boussinesq and finite 
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depth theory predictions of both sum- and difference-interations are compared in the 

transition region from deep to shallow water (10-4 m depth) where both theories are 

expected to be reasonably accurate. 

In general, both theories predict very similar secondary wave amplitude growth, 

with Boussinesq predictions typically slightly lower than finite depth predictions. The 

dependence of the secondary wave response on the directional spreading angle of the 

incident swell components in deep water predicted by both theories are in excellent 

agreement. Whereas the sum-frequency response is only slightly reduced for large 

spreading angles, difference-interactions are sensitive to the primary wave directions with 

typical reductions in secondary wave amplitudes of a factor of 3 to 10 when the primary 

wave spreading angle increases from 0° to 60°. 

Not surprising, discrepancies between Boussinesq and finite depth theory are most 

pronounced for low (infragravity) frequency secondary waves on a relatively steep beach. 

In this case depth variations are appreciable over distances comparable to the secondary 

wavelength and the small beach slope assumption used in both theories is violated. 
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APPENDIX 

Figure 1. Definitional sketch of variables and coordinate frame. Obliquely 

propagating waves shoal upon a beach having straight and parallel depth contours. h0 is a 

representative water depth in the region, 0 is the wave propagation angle, and k is the 

wavenumber vector. 

Figure 2. Comparisons of Boussinesq and finite depth theory predictions of the 

shoaling evolution of a single wave triad. A pair of normally incident primary swell 

components with frequencies 0.08 Hz and 0.12 Hz drives a difference-frequency (0.04 

Hz) secondary wave (left panels) and a sum-frequency (0.20 Hz) secondary wave (right 

panels). The upper and lower panels show the evolution of the amplitudes and biphase. 

Deep water primary wave amplitudes are 0.2 m. 

Figure 3. Same model comparisons as shown in Figure 2 but with an obliquely 

propagating 0.12 Hz primary wave component (deep water incidence angle of 60°). 

Figure 4. Secondary wave response (defined as the secondary wave amplitude 

normalized by the product of the primary wave amplitudes) in 4 m depth versus the deep 

water directional spreading angle of the primary wave components. The primary wave 

frequencies are 0.09 Hz, 0.11 Hz (upper panels) and 0.07 Hz, 0.13 Hz (lower panels). 

The lower frequency primary wave component is normally incident while the deep water 

incidence angle of the higher frequency primary wave varies between 0 and 60°. 

Difference and sum interactions are shown in the left and right panels, respectively. The 

beach slope is 0.01 and primary wave amplitudes in deep water are 0.2 m. 
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Figure 5. Secondary wave response in 4 m depth for primary waves with 

frequencies 0.08 and 0.12 Hz on a beach with slope 0.01. Upper and lower panels show 

results for deep water primary wave amplitudes of 0.1 and 0.4 m respectively (same 

format as Figure 4). 

Figure 6. Secondary wave response in 4 m depth for 0.2 m amplitude primary 

waves with frequencies 0.08 and 0.12 Hz on beaches with slope 0.003 (upper panels) and 

0.03 (lower panels) (same format as Figure 4). 
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